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[1] This paper presents an empirical method for converting reflectivity from Ku-band
(13.8GHz) to S-band (2.8GHz) for several hydrometeor species, which facilitates the
incorporation of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR)
measurements into quantitative precipitation estimation (QPE) products from the U.S.
Next-Generation Radar (NEXRAD). The development of empirical dual-frequency
relations is based on theoretical simulations, which have assumed appropriate scattering
and microphysical models for liquid and solid hydrometeors (raindrops, snow, and ice/
hail). Particle phase, shape, orientation, and density (especially for snow particles) have
been considered in applying the T-matrix method to compute the scattering amplitudes.
Gamma particle size distribution (PSD) is utilized to model the microphysical properties in
the ice region, melting layer, and raining region of precipitating clouds. The variability of
PSD parameters is considered to study the characteristics of dual-frequency reflectivity,
especially the variations in radar dual-frequency ratio (DFR). The empirical relations
between DFR and Ku-band reflectivity have been derived for particles in different regions
within the vertical structure of precipitating clouds. The reflectivity conversion using the
proposed empirical relations has been tested using real data collected by TRMM-PR and a
prototype polarimetric WSR-88D (Weather Surveillance Radar 88 Doppler) radar, KOUN.
The processing and analysis of collocated data demonstrate the validity of the proposed
empirical relations and substantiate their practical significance for reflectivity conversion,
which is essential to the TRMM-based vertical profile of reflectivity correction approach in
improving NEXRAD-based QPE.
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1. Introduction

[2] Accurate measurement of precipitation is essential for
scientific research in various fields such asmeteorology, hydrol-
ogy, climatology, agriculture, environment, and water resource
management. Remote sensing techniques (radar and satellite)
have been widely applied as an efficient way to measure precip-
itation at fine resolution across large regions [Doviak and Zrnic,
1993; Kummerow et al., 2000; Tapiador et al., 2012]. As we

know, global precipitation measurement has become a major
mission of the satellite community [Tapiador et al., 2012]. On
the ground, weather radar plays a critical role in measuring
storm-scale precipitation. In spite of different resolutions (tem-
poral/spatial) and coverages for precipitation measurement,
ground radar and satellite radar can be integrated to achieve
more accurate quantitative precipitation estimation (QPE) for
various scientific applications.
[3] The U.S. Next-Generation Radar (NEXRAD) net-

work, which consists of 159 S-band (2.8 GHz) WSR-88D
(Weather Surveillance Radar 88 Doppler) radars, provides
important radar measurements for nationwide weather
services. However, the effective coverage of NEXRAD is
restricted, especially in the complex terrain of the
Intermountain West, leading to insufficient surveillance of
low-level atmospheres [Maddox et al., 2002]. It has been
realized that QPE based on radar measurements at higher
levels can be overestimated or underestimated, depending
on whether the radar beam intercepts or overshoots the
melting layer [Gourley and Calvert, 2003; Zhang et al.,
2008]. Much effort has been put into reducing QPE errors
through utilizing the vertical profile of reflectivity (VPR)
[Joss and Lee, 1995; Fabry and Zawadzki, 1995; Vignal
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et al., 1999; Matrosov et al., 2007; Tabary, 2007; Zhang
and Qi, 2010; Cao et al., 2012;Wen et al., 2012]. Generally,
a representative VPR is desirable for the success of VPR-
based correction, which becomes problematic in mountain-
ous regions due to beam blockages. Recently, Cao et al.
[2012] and Wen et al. [2012] have proposed the application
of spaceborne radar observations to derive necessary VPR
information for the correction of ground radar–based QPE.
Their studies have taken advantage of the first spaceborne
precipitation radar, Tropical Rainfall Measuring Mission’s
Precipitation Radar (TRMM-PR), which operates at Ku-
band with a frequency of 13.8 GHz [Kozu et al., 2001].
Compared to horizontally scanning NEXRAD radars,
TRMM-PR is much less impacted by mountain blockage
and beam broadening effects in the vertical direction
[Kummerow et al., 2000]. It is capable of providing high-
resolution (250m) observations of the vertical structure of
storms. For the ground radar community, the VPR
information provided by TRMM-PR is valuable for improv-
ing ground radar QPE, especially in complex terrains.
[4] Hydrometeors have different scattering characteristics at

different radar frequencies. For a given precipitation system,
there may be different VPRs observed by S-band NEXRAD
radars and Ku-band TRMM-PR. Therefore, in order to apply
TRMM-PR’s VPR information in NEXRAD radar QPE, a
necessary conversion of VPR from Ku-band to S-band should
be considered. Wen et al. [2012] have used the physically
based VPR model proposed by Kirstetter et al. [2010] to fulfill
this conversion. However, model errors attributed to the
assumptions of icing and melting processes as well as the shape
of the VPR have not been fully studied. It is worth noting that
many previous studies have provided useful information about
the VPR, although they have not directly addressed the partic-
ular issue of Ku-band to S-band conversion. Those studies in-
clude (1) VPR characteristics and statistics [Fabry and
Zawadzki, 1995; Bellon et al., 2005; Cao et al., 2012], (2)
the identification of rain, melting layer, and ice regions [Vignal
et al., 1999; Gourley and Calvert, 2003;Matrosov et al., 2007;
Boodoo et al., 2010; Zhang et al., 2012; Qi et al., 2013, (3) mi-
crophysical and scattering models for hydrometeors [Szyrmer
and Zawadzki, 1999; Straka and Mansell, 2005; Zawadzki
et al., 2005; Matrosov et al., 2007; Ryzhkov et al., 2011], and
(4) dual-frequency (e.g., Ku-band and S-band) properties of
hydrometeors [Liao et al., 2005; Liao and Meneghini, 2009a;
Liao and Meneghini, 2011; Grecu et al., 2011]. Taking advan-
tage of previous findings, the major purpose of this study is to
analyze the uncertainty in VPR conversion using theoretical
simulations. Through the comparison of Ku-band and S-band
reflectivities for different hydrometeors (raindrops, dry/wet
snow, and hail), we derive a set of empirical relations for var-
ious phases of hydrometeors, which are suitable for the real-
time implementation of VPR conversion.
[5] The rest of this paper is organized as follows. Section

2 gives the theoretical basis for this study, including VPR
microphysics, radar scattering theory, and the simulation
method. Section 3 analyzes the dual-frequency characteris-
tics for 13.8GHz (Ku-band) of TRMM-PR and 2.8GHz
(S-band) of NEXRAD radar. Empirical relations for the
VPR conversion are derived as well. The procedure of
VPR conversion from Ku-band to S-band is discussed in
section 4 and further illustrated with radar observations.
The last section gives conclusions of this work.

2. Theoretical Basis

2.1. Vertical Structure of Precipitation and
Radar Observations

[6] Hydrometeors in clouds have a variety of shapes,
sizes, orientations, and phases depending on complex micro-
physical processes (nucleation, icing, growth, melting, evap-
oration, etc.). Figure 1 shows a schematic of the vertical
structure of stratiform precipitation. The VPR can be
segregated into three regions according to the phases
(solid/liquid) of hydrometeors. Above the freezing level is
the ice region, where ice crystals, dry graupel, or snow
aggregates normally exist. Below the freezing level, where
the temperature is higher than 0�C, the frozen hydrometeors
melt until they completely turn into raindrops. This region
is generally referred to as the melting layer. As shown in
Figure 1, the radar bright band (BB), which is enhanced radar
reflectivity attributed to the melting layer, is evident within
this region. The existing hydrometeors in the rain region are
oblate spheroids. When the freezing level is close to or below
the surface, the rain region may not exist and the precipitating
particles on the surface will be ice, snow, or a mixture of the
two. In strong convection, hail may be observed on the sur-
face because it can grow into large particles aloft and then fall
to the ground before completely melting.
[7] Weather radar measures the return signals scattered by

hydrometeors in the atmosphere. The equivalent radar reflec-
tivity factor Ze (hereinafter referred to as the reflectivity) of
radar measurement is given by

Ze lð Þ ¼ l4

p5 Kwj j2
Z 1

0
N Dð Þsb D; lð ÞdD; (1)

where l is the radar wavelength, D is the effective particle di-
ameter, sb(D,l) is the backscattering cross section, and N(D)
is the particle size distribution (PSD). The dielectric parameter
is Kw= (ew� 1)/(ew+ 2), with ew being the complex dielectric
constant of water. Generally, |Kw|

2 has a small variation, ap-
proximately 0.91–0.93 for a wavelength of 0.01–0.1m, and
is independent of temperature [Doviak and Zrnic, 1993].

2.2. Scattering Model

[8] The scattering characteristics of hydrometeors depend
not only on their size, shape, orientation, and composition

Figure 1. Schematic of ground radar–measured VPR for
stratiform precipitation.
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but also on wavelength and temperature [Jung et al., 2008;
Ryzhkov et al., 2011; Cao et al., 2012]. Scattering models,
which are applied to compute the radar variables, need to ac-
commodate these factors. This study considers five different
types of hydrometeors, i.e., raindrops, dry snow, dry ice/hail,
wet snow, and wet ice/hail. The rest of this subsection
addresses the scattering models for these hydrometeors in
the following aspects:
[9] 1. Complex dielectric constant: The dielectric constant

of air (ea) is assumed to be 1, although it has a slight variation
depending on the pressure, humidity, and temperature of the
atmosphere. The computation of the dielectric constant of
water (ew) and ice (ei) follows that of Ray [1972]. The dry/
wet snow and ice/hail are mixtures of air, ice, or water, and
their densities are determined by the densities of air, ice, and
water as well as their composition ratio [Ryzhkov et al.,
2011]. Generally, the densities of air, ice, and water are
0.001, 0.917, and 1 g cm�3, respectively. Their composites
may have various densities. For example, the density of a
dry snow aggregate is normally 0.1–0.6 g cm�3. The density
of a wet snow aggregate will increase to 1 g cm�3 depending
on the melting ratio. Given the composition of air, ice, and
water within the hydrometeor, the dielectric constants can
be calculated using the Maxwell-Garnett mixing formula
[Ryzhkov et al., 2011].
[10] 2. Aspect ratio: Hydrometeors are usually modeled as

oblate or prolate spheroids. Considering that raindrops become
less spherical and more oblate as their diameters increase, we
apply the raindrop size-shape model proposed by Brandes
et al. [2002] and later verified by Gourley et al. [2009]. It is
worth noting that the aspect ratio of melting snow and hail
has not been as thoroughly investigated. Generally, their
aspect ratios vary between 0.6 and 0.9 [Straka et al., 2000].
As suggested by Jung et al. [2008], both the snow and ice/hail
models used in this study assume a constant aspect ratio of
0.75 and ignore the size variation and melting effect assumed
by Ryzhkov et al. [2011].
[11] 3. Particle orientation: The amount of backscattered

energy received by the radar is related to the scatterer’s canting
angle with respect to the radar’s polarization state. A random
Gaussian-distributed canting angle is usually applied for
modeling the orientation of hydrometeors. This study assumes
a 0� mean canting angle for all types of hydrometeors. The
standard deviation (SD) of the canting angle is assumed to
be s=0� for raindrop, s=20� for snow, and s=60� (1� cw)
for ice/hail, where cw is an adjustment parameter and depends
on the fractional water content [Jung et al., 2008]. The
calculation of radar reflectivity, which considers the effect of
the canting angle, follows the formulation reported by Zhang
et al. [2001] and Jung et al. [2008].
[12] 4. Scattering amplitudes: The Rayleigh approximation

becomes unsuitable for estimating the scattering of large
hydrometeors with diameters that approach the radar wave-
length, which is especially the case for Ku-band frequency.
The T-matrix method is an efficient numerical technique for
computing the scattering amplitude of homogenous, rationally
symmetrical, and nonspherical particles [Vivekanandan et al.,
1991;Mishchenko, 2000]. It is particularly useful for particles
that cause Mie scattering, for which the Rayleigh appro-
ximation is no longer valid. This study utilizes the modified
T-matrix code used by Cao et al. [2008, 2012] that includes
ice-related hydrometeors. We assume that the particles

are uniformly filled for the T-matrix calculation of the
hydrometeor’s scattering amplitude, as applied in previous
studies [Vivekanandan et al., 1991; Mishchenko, 2000; Jung
et al., 2008], although a two-layer spheroid model for melting
snow and ice/hail has been suggested by Aydin and Zhao
[1990].

2.3. Microphysical Model

[13] The gamma distribution [Ulbrich, 1983; Bringi et al.,
2002] has been widely used to model the size distribution of
hydrometeors. The normalized gamma PSD is given by

N Dð Þ ¼ Nwf mð Þ D

D0

� �m

exp �ΛDð Þ (2a)

with f mð Þ ¼ 6

3:674
3:67þ mð Þmþ4

Γ mþ 4ð Þ ; and Λ ¼ 3:67þ m
D0

; (2b)

where Nw is a normalized concentration parameter, D0 is the
median volume diameter, m is the shape parameter, Λ is the
slope parameter, and Γ is the gamma function. Given the
PSD and scattering amplitude (proportional to the backscat-
tering cross section) calculated in section 2.2, the Ku-band
and S-band radar reflectivities can be computed for various
hydrometeors using equation (1).

3. Analysis

[14] This section focuses on analyzing the dual-frequency
characteristics for frequencies of 2.8GHz (for the S-band
NEXRAD radar) and 13.8GHz (for the Ku-band TRMM-PR).
The major purpose of the analysis is to develop empirical
relations connecting the two frequencies for VPR conver-
sion in three hydrometeor regions. To better quantify the
scattering differences between the two frequencies, we
use the radar dual-frequency ratio (DFR), which is defined
as follows:

DFR ¼ 10 log10Ze Sð Þ � 10 log10Ze Kuð Þ; (3)

[15] The DFR (in decibels) is independent of the number
concentration of particles but depends heavily on the shape
and median size of the PSD.

3.1. Rain Region

[16] According to equations (1) and (3) as well as the
scattering model assumed in section 2, DFR is uniquely
determined by the median volume diameter D0 given a con-
stant m for rain PSD. Figure 2a shows the dependence of
DFR on D0 for m values of �1, 0, 1, 2, 3, and 4. The results
are similar to those for 3.0 and 13.8GHz as reported by Liao
and Meneghini [2009a]. The DFR is generally negative,
except for small values of D0. The change of DFR is mainly
within 2.5 dB for D0 values less than 3mm. The DFR varies
the most for D0 values between 0.5 and 2.5mm. To investi-
gate the variation in DFR, we have assumed a moderate
range of parameters for rain PSD or raindrop size distribution
(DSD). Similar to Cao and Zhang [2009], we have simulated
DSDs with m,D0, and log10(Nw) uniformly distributed within
the ranges of�1 to 4, 0.5 to 2.5mm, and 3 to 5, respectively.
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Multiyear disdrometer observations in Oklahoma have indi-
cated that the majority of DSDs can be modeled by a gamma
distribution using those parameters. Further discussion on
the assumption of uniform distribution of DSD (or PSD
for snow/hail in the following subsections) parameters is
given in section 3.4. Figures 2b and 2c show the statistical
results of Ku-band and S-band reflectivities calculated from
simulated DSDs. The solid line in Figure 2b indicates the
mean curve of DFR in terms of Ku-band reflectivity. It is
obtained by fitting a linear regression to all the data points

(not shown). The error bars represent the SD of the DFR,
which is generally less than 0.5 dB. In addition, the DFR
tends to have a relatively larger (or smaller) variation for
reflectivities of 35–45 dBZ (or Z< 25 dBZ). The dots in
Figure 2c denote the data points. The solid line is computed
from the fitted mean curve of DFR in Figure 2b. The dashed
line represents the Ku-band/S-band relation derived by
Liao and Meneghini [2009b] (hereinafter referred to as
LM2009), which assumes Marshall–Palmer DSD and radar
frequencies of 3 and 13.8GHz, respectively. In spite of these

Figure 2. S-band (2.8GHz) and Ku-band (13.8GHz) characteristics for rain. (a) Dependence of DFR on
D0 for m values of �1, 0, 1, 2, 3, and 4. (b) Dependence of DFR on Ku-band reflectivity. The solid line
represents the mean relation, whereas the vertical bars denote the SD. (c) Scatter plot of S-band reflectivity
vs. Ku-band reflectivity. The solid line is the mean relation fitted to the data points.

Figure 3. S-band and Ku-band characteristics for dry snow. (a) Dependence of DFR on D0 for snow
densities of 0.1, 0.2, 0.3, 0.4, and 0.5 g cm�3. The value of m is assumed to 0. (b) Dependence of DFR
on D0 for 0.1 g cm�3 of snow density at m values of 0, 1, 2, 3, and 4. (c) Dependence of DFR on D0

for 0.3 g cm�3 of snow density at m values of 0, 1, 2, 3, and 4. (d) Same as Figure 2b except for dry snow
with a density of 0.3 g cm�3. (e) Same as Figure 2c except for dry snow with a density of 0.3 g cm�3.
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differences, LM2009’s relation is consistent with the mean
curve derived in this study.

3.2. Ice Region

[17] In this region, two types of particles, i.e., dry snow and
dryice/hailparticlesarestudied.Figure3showsthedual-frequency
characteristics of dry snow particles. Unlike the DFR for rain,
the DFR for dry snow is positive and increases with increasing
median volume diameter of the PSD. As shown in Figure 3a,
theDFRis insensitive to thedensityof snowparticles foragiven
PSD shape m. The DFR variation with snow densities, e.g., 0.1
and 0.5 g cm�3, is typically less than 0.3 dB. Figures 3b and
3c compare the DFR for two different snow densities and
again illustrate its insensitivity to the snow density. However,
they show that the DFR is much more sensitive to the PSD
shape. DFR values decrease with increasing PSD shape m.
The DFR difference between the two m values increases with
the median volume diameter. Similar to Figures 2b and 2c,
we have simulated PSDs of dry snow with m, D0, and
log10(Nw) uniformly distributed within the ranges of 0–2,
0.1–10mm, and 3–5, respectively. Considering that the
DFR is insensitive to snow density, the simulation assumes
a constant snow density of 0.3 g cm�3. Figure 3d shows
the mean DFR (solid line) in terms of Ku-band reflectivity.
The SD of the DFR is less than 0.5 dB for reflectivities
less than 45 dBZ. Figure 3e displays the fitted mean S-band/

Ku-band relation (solid line) as well as LM2009’s dry snow
relation (dashed line). Both lines are very similar, with only
minor differences attributed to the fact that LM2009’s relation
assumes the Gunn-Marshall snow PSD, and their DFR is for
radar frequencies of 3 vs. 13.8GHz.
[18] Figure 4 shows the dual-frequency characteristics of dry

ice/hail particles. The DFR is also positive and increases
monotonically with D0. It is sensitive to the PSD shape m
as well (Figure 4a). The mean curve of the DFR and S-band
reflectivity in terms of Ku-band reflectivity are shown in
Figures 4b and 4c, respectively. The m, D0, and log10(Nw)
values for the dry ice/hail PSD simulation are in the ranges of
0–2, 0.1–10mm, and 3–5, respectively. As shown in Figure 4b,
the SD of the DFR is also not high, being less than 0.5 dB for
reflectivities less than 45 dBZ. Comparing mean DFR curves
in Figures 3d and 4b, dry ice/hail particles have smaller DFR
values than dry snow particles for a given reflectivity.

3.3. Melting Layer

[19] Snow and ice/hail particles undergoing melting have
considerably different dual-frequency characteristics. In
the ice region, the DFR is shown to be insensitive to the
snow density assumption. However, in the melting layer,
the DFR is much more sensitive to it, especially for PSDs
with a small D0. Figure 5a clearly shows the dependence
of DFR on the snow density assumption. It is noted that

Figure 4. S-band and Ku-band characteristics for dry ice/hail. (a) Dependence of DFR on D0 for m
values of 0, 1, 2, 3, and 4. (b) Same as Figure 2b except for dry hail. (c) Same as Figure 2c except for
dry hail.

Figure 5. Dependence of DFR on D0 for melting snow with densities of 0.1, 0.2, 0.3, 0.4, and 0.5 g cm�3

and melting ratios of (a) 25%, (b) 50%, and (c) 75%. The m value is assumed to be 0.
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this kind of dependence will decrease with increasing melt-
ing ratio, as shown in Figures 5a–5c, with the melting ratio
changing from 25% to 75%. Figure 5c presents a very
small variation in DFR for different snow densities given
a 75% melting ratio.
[20] Figure 6 demonstrates the effects of PSD shape

and melting ratio on the DFR and also compares melting
snow and ice/hail. As shown in Figures 6a and 6b, with a
melting ratio of 0.25, melting snow and ice/hail have
similar DFR patterns as follows: (1) the DFR increases
with increasing D0, (2) the PSD shape m has a similar
effect on the DFR, and (3) the DFR has a small variation

related to the change in m when D0 is less than 2mm.
The difference is that melting snow generally has a larger
DFR for a given D0. As shown in Figures 6c and 6d, the
degree of melting affects the DFR of melting snow more
than it does that of melting ice/hail. As for snow
particles, the melting process normally reduces the DFR
for a given PSD, although the DFR may increase with
the melting process when the melting ratio exceeds 0.6
and D0 is large (e.g., >6mm). Given a large melting
ratio, the trend of DFR looks similar between the snow
particles and the ice/hail particles. For some PSDs
(e.g., D0 within 1–3mm), the DFR tends to be negative

Figure 6. DFR comparison between melting snow (left column) and melting ice/hail (right column) for a
melting ratio of 0.25 and m values of 0, 1, 2, 3, and 4 (a, b) as well as for a m value of 0 and melting ratios
of 0.1, 0.25, 0.40, 0.60, 0.75, and 0.90 (c, d). In Figures 6a and 6c, the snow density is 0.3 g cm�3.

Figure 7. DFR vs. Ku-band reflectivity for different melting ratios. (a) Melting snow with a density of
0.3 g cm�3. (b) Melting hail.
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when a large portion of particles are melted. When the
melting ratio approaches 100%, the DFR of melting snow
tends to approach the DFR of melting ice/snow as well.
[21] To investigate the variation of DFR in the melting

layer, the same ranges of parameters shown in Figures 3
and 4 have been applied to simulate the PSDs of melting
snow and ice/hail. Although the assumption of snow density
could cause some uncertainty in the DFR, especially for
cases of partial melting, we have ignored this effect and as-
sumed a constant snow density of 0.3 g cm�3. The mean
curves of DFR in terms of Ku-band reflectivity are shown
in Figure 7 for different melting ratios. It is clearly shown
that the melting process introduces a large variation in
DFR. All these mean curves, as well as those for rain, dry
snow, and ice/hail, are summarized in Table 1 using the
following polynomial function:

DFR ¼ a0Ze Kuð Þ0 þ a1Ze Kuð Þ1 þ a2Ze Kuð Þ2 þ a3Ze Kuð Þ3
þ a4Ze Kuð Þ4; (4)

where DFR and Ze(Ku) are expressed in decibels and decibel Z
units, respectively. Given these relations, a Ku-band (13.8GHz)
reflectivity can be conveniently converted to an S-band
(2.8GHz) reflectivity for the studied hydrometeor species.

3.4. Error Analysis

[22] The measurements of TRMM-PR can be greatly
degraded by precipitation attenuation. Uncertainty may
be introduced if the attenuation is not sufficiently cor-
rected. This is one of the major error sources for
TRMM-PR–measured reflectivity. The error of Ku-band
reflectivity will be propagated into the converted S-band
reflectivity. According to equation (4), if the Ku-band er-
ror is small, the conversion error can be approximated by

dS � dKu 1þ a1 þ 2a2Ze Kuð Þ þ 3a3Ze Kuð Þ2 þ 4a4Ze Kuð Þ3�� ��; (5)

where the notation “| |” denotes the absolute value and d
is the error term (in decibels). As indicated in equation

(5), the conversion error dS is associated with the
Ku-band reflectivity and polynomial coefficients a1–a4
listed in Table 1. Fortunately, these coefficients are
normally very small and do not have much effect on
the total error. With dry snow as an example, given that
the Ku-band reflectivity is 50 dBZ and its error dKu is
1 dB, the S-band conversion error dS is only 1.23 dB.

3.5. Discussion

[23] The derivation of mean DFR curves in previous
subsections is based on simulated DSDs/PSDs, whose
model parameters have uniform probability distribution
functions (PDFs) within certain ranges. Considering that
the characteristics of DSDs/PSDs from radar measure-
ments have uncertainty, the assumption of uniform
PDFs is reasonable, although additional uncertainty is
present in the derived mean DFR curves. Using
observed DSDs/PSDs may be a better alternative.
However, reliable and ergodic DSDs/PSDs are difficult
to obtain, especially for particles aloft. This indicates
that observed DSDs/PSDs with biased PDFs may
introduce errors in developing the DFR curves. Next,
we address the following question: If the true PDF of
DSDs/PSDs is not uniformly distributed, do the derived
DFR curves change? If the mean values of two PDFs
(true vs. uniform) are close, the answer is “No.” Figure 8
illustrates the DFR variability attributed to small
changes in PSD parameters. The short lines in the figure
denote the DFR associated with the change in m for a
given Nw and D0. It is noted that the DFR typically
has a small change (<0.5 dB), with m varying from 0
to 1, especially for reflectivities less than 45 dBZ.
Furthermore, if the change in mean Nw is small
(e.g., within 5 dB), then the DFR curves will have only
a small difference as well. For example, the DFR curves
of dry snow (Figure 8a) have differences not exceeding
0.4, 0.7, and 1 dB for a 5 dB change in Nw given
Ku-band reflectivities of 35, 40, and 45 dBZ, respec-
tively. Particularly, the DFR curves for melting snow/

Table 1. Empirical Relations (Coefficients) for Radar Reflectivity Conversion From Ku-band (13.8GHz) to S-band (2.8GHz)

Type DFR (S-Ku) = a0 + a1�Z (Ku)1 + a2�Z (Ku)2 + a3�Z (Ku)3 + a4�Z (Ku)4

a0 a1 a2 a3 a4
Rain 0.0478 0.0123 �3.504� 10�4 �3.30� 10�5 4.27� 10�7

Dry snow 0.174 0.0135 �1.38� 10�3 4.74� 10�5

Dry hail 0.0880 5.39� 10�2 �2.99� 10�4 1.90� 10�5

10% melting snow 2.82 5.33� 10�3 1.005� 10�3 �5.78� 10�5 1.10� 10�6

20% melting snow 2.014 3.34� 10�3 8.24� 10�4 �5.06� 10�5 9.39� 10�7

30% melting snow 1.31 2.11� 10�3 7.008� 10�4 �4.58� 10�5 8.22� 10�7

40% melting snow 0.816 1.22� 10�3 6.13� 10�4 �4.15� 10�5 7.12� 10�7

50% melting snow 0.493 5.96� 10�4 5.85� 10�4 �3.89� 10�5 6.16� 10�7

60% melting snow 0.287 5.29� 10�4 6.59� 10�4 �4.15� 10�5 5.80� 10�7

70% melting snow 0.159 9.42� 10�4 8.16� 10�4 �4.97� 10�5 6.13� 10�7

80% melting snow 0.0812 2.001� 10�3 1.035� 10�3 �6.44� 10�5 7.41� 10�7

90% melting snow 0.0412 3.66� 10�3 1.17� 10�3 �8.08� 10�5 9.25� 10�7

10% melting hail 0.043 �8.27� 10�3 1.66� 10�3 �7.19� 10�5 9.52� 10�7

20% melting hail 0.175 �8.05� 10�3 1.21� 10�3 �4.66� 10�5 6.33� 10�7

30% melting hail 0.285 �9.96� 10�3 1.45� 10�3 �5.33� 10�5 6.71� 10�7

40% melting hail 0.298 �2.10� 10�2 2.44� 10�3 �8.56� 10�5 9.40� 10�7

50% melting hail 0.270 �2.94� 10�2 3.22� 10�3 �1.12� 10�4 1.15� 10�6

60% melting hail 0.236 �3.46� 10�2 3.71� 10�3 �1.30� 10�4 1.29� 10�6

70% melting hail 0.188 �3.29� 10�2 3.75� 10�3 �1.39� 10�4 1.37� 10�6

80% melting hail 0.195 �3.83� 10�2 4.14� 10�3 �1.54� 10�4 1.51� 10�6

90% melting hail 0.180 �3.73� 10�2 4.08� 10�3 �1.59� 10�4 1.59� 10�6
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hail particles (as shown in Figures 8c and 8d, with a
melting ratio of 50%) are much less sensitive to the
change in PSD parameters than those for dry snow/hail
particles. This trend is evident for lower reflectivity
values (e.g., Z< 45 dBZ).
[24] Natural snow/hail PSDs show a large variation in

time and space. The simulated PSDs with m, D0,
and log10(Nw) uniformly distributed within the ranges of
0–2, 0.1–10mm, and 3–5, respectively, are expected to
represent their major variability. The natural PSDs might
have greater variability beyond these ranges. However,
according to the aforementioned analysis, the simulated
PSDs could derive reasonable mean DFR curves that
would be close to those derived from natural PSDs if
the mean values of PSD parameters (m and Nw) vary
little. In practice, many previous studies have applied
fixed parameters for the snow/hail PSD model, such as
the exponential (m= 0) PSD model [Jung et al., 2008;
Ryzhkov et al., 2011]. This kind of assumption would
further reduce the variation in DFR. Therefore, we did
not apply it in the current study. We are also aware that
real microphysical processes could be much more com-
plex than our simulation. However, an in-depth investiga-
tion of microphysics is beyond the scope of this study.
As Figure 8 suggests, we can tolerate the uncertainty at-
tributed to the microphysical variability, especially for

reflectivities less than 45 dBZ. Given the aforementioned
discussion, the simulation approach used in this study is
reasonable for deriving DFR relations between Ku-bands
and S-bands.

4. Application

[25] The derived empirical relations have practical
significance for the incorporation of TRMM-PR measure-
ments into NEXRAD-based QPE. Previous studies [e.g.,
Tabary, 2007; Zhang and Qi, 2010] have shown that the
effect of the BB is a major error source and needs to be cor-
rected for ground radar–based QPE. The approach of
TRMM-based VPR correction appears to be a novel solu-
tion to this issue for the radar and satellite community
[Wen et al., 2012; Cao et al., 2012]. Figure 9 illustrates
the procedure of VPR conversion, which is desirable for
the purpose of VPR correction. First, the heights of three
regions, the ice region, melting layer, and rain region,
should be determined prior to DFR conversion. For
TRMM-PR, the detection of the BB has been included in
the TRMM 2A23 algorithm [Awaka et al., 2009]. There-
fore, the relevant TRMM products, such as the boundary
of the BB, can be utilized directly. In the ice region, we can
choose either the dry snow model or the dry ice/hail model,
depending on whether melting snow or melting ice/hail is

Figure 8. Variability of mean DFR curves caused by the variation in PSD parameters. (a) Dry snow.
(b) Dry ice/hail. (c) Melting snow (meting ratio = 0.5). (d) Melting ice/hail (meting ratio = 0.5). The snow
density is 0.3 g cm�3 in Figures 8a and 8c. Short lines denote the change in m from 0 to 1, whereas the cross,
solid line, and dotted line assume Nw= 10

3.5, 104, and 104.5, respectively.
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assumed in the melting layer. Although the model choice can
be arbitrary, the reflectivity at the freezing level may give some
hints; i.e., dry snow particles are likely related to a lower
reflectivity (e.g., <35 dBZ) there. The melting process in the
melting layer typically involves complicated microphysical
processes, which are not fully understood. Accurate modeling
of the melting process is beyond the scope of this study. For
simplicity, we have assumed that melting is independent of
particle size. Furthermore, the melting process is linear, with
height changing from top to bottom of the melting layer. This
indicates that all particles have the same melting ratio at a
given height. As shown in Figure 9, the heights corresponding
to the melting ratios of 10%, 20%, . . ., 90% (with 10% inter-
vals) are computed so that the Ku-band VPR can be interpo-
lated to these heights. Based on the empirical relations derived
for these melting ratios, the Ku-band reflectivity at these
heights is then converted to S-band reflectivity. The conver-
sion is applied to the entire VPR using appropriate relations
(Table 1). After the conversion, the S-band VPR can be inter-
polated onto any height required for such applications as QPE.
[26] The rest of this section incorporates real data to

demonstrate the reflectivity conversion. We have utilized the
same data sets as those analyzed byWen et al. [2011]. The data
sets of 20 events have been collected using KOUN radar, a
prototype polarimetric WSR-88D radar located in central
Oklahoma, and TRMM-PR. The resolution volume–matching
technique has been used for matching data from the KOUN ra-
dar and TRMM-PR. The software (available at http://open-
source.gsfc.nasa.gov/projects/GPM/index.php) was developed

for the global precipitation measurement Ground Validation
System Validation Network. The hydrometeor classification al-
gorithm [Park et al., 2009] developed by the National Severe
Storm Laboratories (NSSL) has been used to identify radar ech-
oes. Details of data sets and datamatching have been previously
reported [Wen et al., 2011]. It is worth noting that the beam
broadening effect degrades the radar’s vertical resolution at far
ranges. In order to minimize these deficiencies, this study has
chosen KOUN-PR matched data within 10–50km from the
site of KOUN.
[27] Figure 10 shows the comparison of collocated reflectiv-

ity between TRMM-PR and KOUN. Six categories of hydro-
meteor species have been identified for the comparison. As
for the reflectivity conversion, the rain relation in Table 1 is ap-
plied to the categories of light or moderate rain and heavy rain.
The dry snow relation is applied to the categories of dry snow
and graupel. For the categories of wet snow and rain/hail mix-
ture, we have applied the relations of melting snow and
melting hail, respectively. The melting ratio has been
estimated according to the height of the radar beam relative to
the height of the melting layer (TRMM 2A23 products), as
suggested in Figure 9. Figure 11 shows the derived PDFs of
reflectivity difference (TRMM-PR reflectivity minus KOUN
reflectivity). Dashed lines represent comparisons of collocated
TRMM-PR and KOUN data prior to correction. The SD values
of these distributions are approximately 3 dB, less than the SD
values obtained using simulated PSD data (e.g., Figures 2–4).
In addition to the frequency difference, there are many other
sources contributing to the uncertainty with the matched data.

Figure 9. Illustration of VPR conversion from Ku-band to S-band using empirical relations derived in
the three regions.
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One of major sources is the difference in sampling volumes.
TRMM-PR generally has a sampling volume with a horizontal
(or vertical) dimension of 4.3 km (or 250m), whereas KOUN
has a sampling volume with a dimension of several hundred
meters, varying with range and elevation angle. The centers of

the sampling volumes are always different as well during data
collection. Nevertheless, the data matching process has miti-
gated this kind of uncertainty as much as possible. TRMM-PR
reflectivity data have been converted to S-band and then
compared with collocated KOUN data; their differences are

Figure 11. PDFs of reflectivity difference (Ku-band TRMM-PR vs. S-band KOUN) for various radar
echo classes. (a) Light or moderate rain. (b) Heavy rain. (c) Rain/hail mixture. (d) Graupel. (e) Dry snow.
(f ) Wet snow.

Figure 10. Comparison of TRMM-PR and KOUN reflectivity data for various radar echo classes.
(a) Rain. (b) Dry and wet snow. (c) Graupel and rain/hail mixture. The radar data within 10–50 km from
the KOUN radar site were applied. The matched data points are 9811, 303, 8702, 174, 608, and 44 for
light and moderate rain, heavy rain, dry snow, wet snow, graupel, and rain/hail mixture, respectively.

Table 2. Comparison of TRMM-PR and KOUN Reflectivity Data for Various Radar Echo Classes (Before and After Reflectivity
Conversion)

Light or Moderate Rain Heavy Rain Dry Snow Graupel Rain/Hail Mixture Wet Snow

Bias (%) (before conversion) 2.07 2.16 �1.47 �3.26 �6.57 �4.95
Bias (%) (after conversion) 0.069 �1.23 0.36 �0.64 �4.75 �0.67
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represented by the solid black lines in Figure 11. Although the
shapes of the PDFs change little, the mean values shift toward
zero, implying that the conversion of reflectivity compensates
for the differences attributed to different radar frequencies.
The bias values of TRMM-PR and KOUN reflectivity data
are listed in Table 2. Ku-band TRMM-PR normally has a
higher reflectivity than S-band KOUN for rain categories but
has a lower reflectivity for other categories. The reflectivity
conversion has effectively reduced the differences between
the two radar data sets, demonstrating the ability of the pro-
posed empirical relations to interpret TRMM-PR observations
in terms of S-band frequency.

5. Conclusions

[28] This study presents an empirical method for reflectiv-
ity conversion from Ku-band (13.8GHz) to S-band
(2.8GHz) for frozen, mixed-phase, and liquid hydrometeors,
which readily facilitates the incorporation of TRMM-PR
measurements into NEXRAD-based QPE. The study of
dual-frequency reflectivity is based on theoretical simula-
tions, which have assumed appropriate scattering and micro-
physical models for liquid/solid particles (raindrop, snow,
and ice/hail). The dual-frequency characteristics are investi-
gated by simulating various PSDs. Results show that the var-
iation in DFR for rain, dry snow, or dry ice/hail is small (SD
is within 0.5 dB) for Ku-band reflectivity values less than
45 dBZ. Compared to the ice/hail hydrometeors, snow parti-
cles have a larger variation in DFR, which can be attributed
to the melting process. It is therefore necessary to consider
the melting process with various melting ratios. We have de-
veloped a set of empirical polynomial relations (DFR vs.
Ku-band reflectivity) for several hydrometeor species (i.e.,
dry snow, dry ice/hail, melting snow, melting ice/hail, and
raindrops) in different regions of the VPR. The proposed
empirical relations have been tested using observations
collected by TRMM-PR and KOUN radar. Processing and
analysis of collocated data demonstrate that the reflectivity
conversion based on the proposed empirical relations effec-
tively reduces the difference attributed to Ku-band and
S-band radar frequencies.
[29] Recently, the study of improving NEXRAD-based

QPE by incorporating observations from TRMM-PR has
attracted research interests in the radar and satellite communi-
ties. For example, the VPR correction method based on
TRMM-PR observations has been introduced to mitigate the
effects of radar melting layer observations on ground radar
QPE. The derived DFR relations in this study can be directly
applied to convert TRMM-PR reflectivity to the frequency
of NEXRAD. Therefore, they have practical significance for
combining TRMM-PR with NEXRAD for the improvement
of ground radar QPE, especially for stratiform precipitation.
Overall, this study contributes to the synergistic development
of QPE algorithms using radar observations from space and
ground. Future work will include Ka-band radar observations
in preparation for the upcoming global precipitation measure-
ment mission.
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